Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mol Cancer Res ; 21(11): 1163-1175, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37478162

RESUMO

Mutations in the promoter of the telomerase reverse transcriptase (TERT) gene are the paradigm of a cross-cancer alteration in a noncoding region. TERT promoter mutations (TPM) are biomarkers of poor prognosis in cancer, including thyroid tumors. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert-123C>T) and crossed it with thyroid-specific BrafV600E-mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all BrafV600E animals developed well-differentiated papillary thyroid tumors, 29% and 36% of BrafV600E+Tert-123C>T and BrafV600E+K5-Tert mice progressed to poorly differentiated cancers at week 20, respectively. Tert-upregulated tumors showed increased mitosis and necrosis in areas of solid growth, and older animals displayed anaplastic-like features, that is, spindle cells and macrophage infiltration. Murine TPM increased Tert transcription in vitro and in vivo, but temporal and intratumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine, and chemokine signaling, were overactivated. These models constitute useful preclinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs. IMPLICATIONS: Telomerase-driven cancer progression activates pathways that can be dissected and perhaps therapeutically exploited.


Assuntos
Telomerase , Neoplasias da Glândula Tireoide , Animais , Camundongos , Telomerase/genética , Regulação para Cima , Fosfatidilinositol 3-Quinases/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Mutação , Microambiente Tumoral
2.
JAMA Otolaryngol Head Neck Surg ; 149(4): 300-309, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757708

RESUMO

Importance: Survival outcomes for anaplastic thyroid cancer (ATC), the most aggressive subtype of thyroid cancers, have remained poor. However, targeted therapies and immunotherapies present new opportunities for treatment of this disease. Evaluations of survival outcomes over time with new multimodal therapies are needed for optimizing treatment plans. Objective: To evaluate the association of treatment strategies and tumor characteristics with overall survival (OS) among patients with ATC. Design, Setting, and Participants: This retrospective case series study evaluated the survival outcomes stratified by treatment strategies and tumor characteristics among patients with ATC treated at a tertiary level academic institution from January 1, 2000, to December 31, 2021. Demographic, tumor, treatment, and outcome characteristics were analyzed. Kaplan-Meier method and log rank test modeled OS by treatment type and tumor characteristics. Data were analyzed in May 2022. Main Outcomes and Measures: Overall survival (OS). Results: The study cohort comprised 97 patients with biopsy-proven ATC (median [range] age at diagnosis, 70 [38-93] years; 60 (62%) female and 85 [88%] White individuals; 59 [61%] never smokers). At ATC diagnosis, 18 (19%) patients had stage IVA, 19 (20%) had stage IVB, and 53 (55%) had stage IVC disease. BRAF status was assessed in 38 patients; 18 (47%) had BRAF-V600E variations and 20 (53%), BRAF wild type. Treatment during clinical course included surgery for 44 (45%) patients; chemotherapy, 41 (43%); definitive or adjuvant radiation therapy, 34 (RT; 35%); and targeted therapy, 28 (29%). Median OS for the total cohort was 6.5 (95% CI, 4.3-10.0) months. Inferior OS was found in patients who did not receive surgery (hazard ratio [HR], 2.12; 95% CI, 1.35-3.34; reference, received surgery), chemotherapy (HR, 3.28; 95% CI, 1.99-5.39; reference, received chemotherapy), and definitive or adjuvant RT (HR, 2.47; 95% CI, 1.52-4.02; reference, received definitive/adjuvant RT). On multivariable analysis, age at diagnosis (HR, 1.03; 95% CI, 1.01-1.06), tumor stage IVC (HR, 2.65; 95% CI, 1.35-5.18), and absence of definitive or adjuvant RT (HR, 1.90; 95% CI, 1.01-3.59) were associated with worse OS. Conclusions and Relevance: This retrospective single-institution study found that lower tumor stage, younger age, and the ability to receive definitive or adjuvant RT were associated with improved OS in patients with ATC.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Carcinoma Anaplásico da Tireoide/mortalidade , Carcinoma Anaplásico da Tireoide/patologia , Carcinoma Anaplásico da Tireoide/terapia , Neoplasias da Glândula Tireoide/mortalidade , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/terapia , Humanos , Masculino , Feminino , Taxa de Sobrevida , Terapia Combinada , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Radioterapia Adjuvante , Antineoplásicos/uso terapêutico , Tireoidectomia , Resultado do Tratamento
3.
Clin Cancer Res ; 29(8): 1620-1630, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36780190

RESUMO

PURPOSE: The determinants of response or resistance to radioiodine (RAI) are unknown. We aimed to identify genomic and transcriptomic factors associated with structural responses to RAI treatment of metastatic thyroid cancer, which occur infrequently, and to test whether high MAPK pathway output was associated with RAI refractoriness. EXPERIMENTAL DESIGN: Exceptional response to RAI was defined as reduction of tumor volume based on RECIST v1.1. We performed a retrospective case-control study of genomic and transcriptomic characteristics of exceptional responders (ER; n = 8) versus nonresponders (NR; n = 16) matched by histologic type and stage at presentation on a 1:2 ratio. RESULTS: ER are enriched for mutations that activate MAPK through RAF dimerization (RAS, class 2 BRAF, RTK fusions), whereas NR are associated with BRAFV600E, which signals as a monomer and is unresponsive to negative feedback. ER have a lower MAPK transcriptional output and a higher thyroid differentiation score (TDS) than NR (P < 0.05). NR are enriched for 1q-gain (P < 0.05) and mutations of genes regulating mRNA splicing and the PI3K pathway. BRAFV600E tumors with 1q-gain have a lower TDS than BRAFV600E/1q-quiet tumors and transcriptomic signatures associated with metastatic propensity. CONCLUSIONS: ER tumors have a lower MAPK output and higher TDS than NR, whereas NR have a high frequency of BRAFV600E and 1q-gain. Molecular profiling of thyroid cancers and further functional validation of the key findings discriminating ER from NR may help predict response to RAI therapy.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/radioterapia , Neoplasias da Glândula Tireoide/patologia , Radioisótopos do Iodo/uso terapêutico , Estudos Retrospectivos , Transcriptoma , Estudos de Casos e Controles , Fosfatidilinositol 3-Quinases/genética , Genômica
4.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36747657

RESUMO

Mutations in the promoter of the telomerase reverse transcriptase ( TERT ) gene are the paradigm of a cross-cancer alteration in a non-coding region. TERT promoter mutations (TPMs) are biomarkers of poor prognosis in several tumors, including thyroid cancers. TPMs enhance TERT transcription, which is otherwise silenced in adult tissues, thus reactivating a bona fide oncoprotein. To study TERT deregulation and its downstream consequences, we generated a Tert mutant promoter mouse model via CRISPR/Cas9 engineering of the murine equivalent locus (Tert -123C>T ) and crossed it with thyroid-specific Braf V600E -mutant mice. We also employed an alternative model of Tert overexpression (K5-Tert). Whereas all Braf V600E animals developed well-differentiated papillary thyroid tumors, 29% and 36% of Braf V600E +Tert -123C>T and Braf V600E +K5-Tert mice progressed to poorly differentiated thyroid cancers at week 20, respectively. Braf+Tert tumors showed increased mitosis and necrosis in areas of solid growth, and older animals from these cohorts displayed anaplastic-like features, i.e., spindle cells and macrophage infiltration. Murine Tert promoter mutation increased Tert transcription in vitro and in vivo , but temporal and intra-tumoral heterogeneity was observed. RNA-sequencing of thyroid tumor cells showed that processes other than the canonical Tert-mediated telomere maintenance role operate in these specimens. Pathway analysis showed that MAPK and PI3K/AKT signaling, as well as processes not previously associated with this tumor etiology, involving cytokine and chemokine signaling, were overactivated. Braf+Tert animals remained responsive to MAPK pathway inhibitors. These models constitute useful pre-clinical tools to understand the cell-autonomous and microenvironment-related consequences of Tert-mediated progression in advanced thyroid cancers and other aggressive tumors carrying TPMs.

5.
Mol Cancer ; 21(1): 213, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476495

RESUMO

BACKGROUND: Inactivation of the Hippo pathway promotes Yap nuclear translocation, enabling execution of a transcriptional program that induces tissue growth. Genetic lesions of Hippo intermediates only identify a minority of cancers with illegitimate YAP activation. Yap has been implicated in resistance to targeted therapies, but the mechanisms by which YAP may impact adaptive resistance to MAPK inhibitors are unknown. METHODS: We screened 52 thyroid cancer cell lines for illegitimate nuclear YAP localization by immunofluorescence and fractionation of cell lysates. We engineered a doxycycline (dox)-inducible thyroid-specific mouse model expressing constitutively nuclear YAPS127A, alone or in combination with endogenous expression of either HrasG12V or BrafV600E. We also generated cell lines expressing dox-inducible sh-miR-E-YAP and/or YAPS127A. We used cell viability, invasion assays, immunofluorescence, Western blotting, qRT-PCRs, flow cytometry and cell sorting, high-throughput bulk RNA sequencing and in vivo tumorigenesis to investigate YAP dependency and response of BRAF-mutant cells to vemurafenib. RESULTS: We found that 27/52 thyroid cancer cell lines had constitutively aberrant YAP nuclear localization when cultured at high density (NU-YAP), which rendered them dependent on YAP for viability, invasiveness and sensitivity to the YAP-TEAD complex inhibitor verteporfin, whereas cells with confluency-driven nuclear exclusion of YAP (CYT-YAP) were not. Treatment of BRAF-mutant thyroid cancer cells with RAF kinase inhibitors resulted in YAP nuclear translocation and activation of its transcriptional output. Resistance to vemurafenib in BRAF-mutant thyroid cells was driven by YAP-dependent NRG1, HER2 and HER3 activation across all isogenic human and mouse thyroid cell lines tested, which was abrogated by silencing YAP and relieved by pan-HER kinase inhibitors. YAP activation induced analogous changes in BRAF melanoma, but not colorectal cells. CONCLUSIONS: YAP activation in thyroid cancer generates a dependency on this transcription factor. YAP governs adaptive resistance to RAF kinase inhibitors and induces a gene expression program in BRAFV600E-mutant cells encompassing effectors in the NRG1 signaling pathway, which play a central role in the insensitivity to MAPK inhibitors in a lineage-dependent manner. HIPPO pathway inactivation serves as a lineage-dependent rheostat controlling the magnitude of the adaptive relief of feedback responses to MAPK inhibitors in BRAF-V600E cancers.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Animais , Camundongos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Quinases raf
6.
Cancers (Basel) ; 14(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36230610

RESUMO

Papillary thyroid carcinoma (PTC) is the most frequent histological subtype of thyroid cancers (TC), and BRAFV600E genetic alteration is found in 60% of this endocrine cancer. This oncogene is associated with poor prognosis, resistance to radioiodine therapy, and tumor progression. Histological follow-up by anatomo-pathologists revealed that two-thirds of surgically-removed thyroids do not present malignant lesions. Thus, continued fundamental research into the molecular mechanisms of TC downstream of BRAFV600E remains central to better understanding the clinical behavior of these tumors. To study PTC, we used a mouse model in which expression of BRAFV600E was specifically switched on in thyrocytes by doxycycline administration. Upon daily intraperitoneal doxycycline injection, thyroid tissue rapidly acquired histological features mimicking human PTC. Transcriptomic analysis revealed major changes in immune signaling pathways upon BRAFV600E induction. Multiplex immunofluorescence confirmed the abundant recruitment of macrophages, among which a population of LYVE-1+/CD206+/STABILIN-1+ was dramatically increased. By genetically inactivating the gene coding for the scavenger receptor STABILIN-1, we showed an increase of CD8+ T cells in this in situ BRAFV600E-dependent TC. Lastly, we demonstrated the presence of CD206+/STABILIN-1+ macrophages in human thyroid pathologies. Altogether, we revealed the recruitment of immunosuppressive STABILIN-1 macrophages in a PTC mouse model and the interest to further study this macrophage subpopulation in human thyroid tissues.

7.
Sci Adv ; 8(25): eabn9699, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731870

RESUMO

Hürthle cell carcinomas (HCCs) display two exceptional genotypes: near-homoplasmic mutation of mitochondrial DNA (mtDNA) and genome-wide loss of heterozygosity (gLOH). To understand the phenotypic consequences of these genetic alterations, we analyzed genomic, metabolomic, and immunophenotypic data of HCC and other thyroid cancers. Both mtDNA mutations and profound depletion of citrate pools are common in HCC and other thyroid malignancies, suggesting that thyroid cancers are broadly equipped to survive tricarboxylic acid cycle impairment, whereas metabolites in the reduced form of NADH-dependent lysine degradation pathway were elevated exclusively in HCC. The presence of gLOH was not associated with metabolic phenotypes but rather with reduced immune infiltration, indicating that gLOH confers a selective advantage partially through immunosuppression. Unsupervised multimodal clustering revealed four clusters of HCC with distinct clinical, metabolomic, and microenvironmental phenotypes but overlapping genotypes. These findings chart the metabolic and microenvironmental landscape of HCC and shed light on the interaction between genotype, metabolism, and the microenvironment in cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias da Glândula Tireoide , Carcinoma Hepatocelular/genética , DNA Mitocondrial/genética , Genótipo , Humanos , Neoplasias Hepáticas/genética , Mutação , Células Oxífilas/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Microambiente Tumoral/genética
8.
Biomedicines ; 10(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453506

RESUMO

Papillary thyroid cancer (PTC) is the most common endocrine malignancy for which diagnosis and recurrences still challenge clinicians. New perspectives to overcome these issues could come from the study of extracellular vesicle (EV) populations and content. Here, we aimed to elucidate the heterogeneity of EVs circulating in the tumor and the changes in their microRNA content during cancer progression. Using a mouse model expressing BRAFV600E, we isolated and characterized EVs from thyroid tissue by ultracentrifugations and elucidated their microRNA content by small RNA sequencing. The cellular origin of EVs was investigated by ExoView and that of deregulated EV-microRNA by qPCR on FACS-sorted cell populations. We found that PTC released more EVs bearing epithelial and immune markers, as compared to the healthy thyroid, so that changes in EV-microRNAs abundance were mainly due to their deregulated expression in thyrocytes. Altogether, our work provides a full description of in vivo-derived EVs produced by, and within, normal and cancerous thyroid. We elucidated the global EV-microRNAs signature, the dynamic loading of microRNAs in EVs upon BRAFV600E induction, and their cellular origin. Finally, we propose that thyroid tumor-derived EV-microRNAs could support the establishment of a permissive immune microenvironment.

9.
Thyroid ; 32(3): 273-282, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35045748

RESUMO

Background: Oncogenic activation of mitogen-activated protein kinase (MAPK) signaling is associated with radioiodine refractory (RAIR) thyroid cancer. Preclinical models suggest that activation of the receptor tyrosine kinase erbB-3 (HER3) mitigates the MAPK pathway inhibition achieved by BRAF inhibitors in BRAFV600E mutant thyroid cancers. We hypothesized that combined inhibition of BRAF and HER3 using vemurafenib and the human monoclonal antibody CDX-3379, respectively, would potently inhibit MAPK activation and restore radioactive iodine (RAI) avidity in patients with BRAF-mutant RAIR thyroid cancer. Methods: Patients with BRAFV600E RAIR thyroid cancer were evaluated by thyrogen-stimulated iodine-124 (124I) positron emission tomography-computed tomography (PET/CT) at baseline and after 5 weeks of treatment with oral vemurafenib 960 mg twice daily alone for 1 week, followed by vemurafenib in combination with 1000 mg of intravenous CDX-3379 every 2 weeks. Patients with adequate 124I uptake on the second PET/CT then received therapeutic radioactive iodine (131I) with vemurafenb+CDX-3379. All therapy was discontinued two days later. Treatment response was monitored by serum thyroglobulin measurements and imaging. The primary endpoints were safety and tolerability of vemurafenib+CDX-3379, as well as the proportion of patients after vemurafenb+CDX-3379 therapy with enhanced RAI incorporation warranting therapeutic 131I. Results: Seven patients were enrolled; six were evaluable for the primary endpoints. No grade 3 or 4 toxicities related to CDX-3379 were observed. Five patients had increased RAI uptake after treatment; in 4 patients this increased uptake warranted therapeutic 131I. At 6 months, 2 patients achieved partial response after 131I and 2 progression of disease. Next-generation sequencing of 5 patients showed that all had co-occurring telomerase reverse transcriptase promoter alterations. A deleterious mutation in the SWItch/Sucrose Non-Fermentable (SWI/SNF) gene ARID2 was discovered in the patient without enhanced RAI avidity after therapy and an RAI-resistant tumor from another patient that was sampled off-study. Conclusions: The endpoints for success were met, providing preliminary evidence of vemurafenib+CDX-3379 safety and efficacy for enhancing RAI uptake. Preclinical data and genomic profiling in this small cohort suggest SWI/SNF gene mutations should be investigated as potential markers of resistance to redifferentiation strategies. Further evaluation of vemurafenib+CDX-3379 as a redifferentiation therapy in a larger trial is warranted (ClinicalTrials.gov: NCT02456701).


Assuntos
Antineoplásicos , Neoplasias da Glândula Tireoide , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Humanos , Radioisótopos do Iodo/uso terapêutico , Mutação , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/radioterapia , Vemurafenib/uso terapêutico
10.
J Clin Endocrinol Metab ; 107(4): 1030-1039, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34897468

RESUMO

CONTEXT: The BRAFV600E mutation has been associated with more advanced clinical stage in papillary thyroid cancer (PTC) and decreased responsiveness to radioiodine (RAI). However, some BRAF mutant PTCs respond to RAI and have an indolent clinical behavior suggesting the presence of different subtypes of BRAF mutant tumors with distinct prognosis. OBJECTIVE: To characterize the molecular and clinical features of 2 subtypes of BRAF-mutant PTCs defined by their degree of expression of iodine metabolism genes. DESIGN: 227 BRAF-mutant PTCs from the Cancer Genome Atlas Thyroid Cancer study were divided into 2 subgroups based on their thyroid differentiation score (TDS): BRAF-TDShi and BRAF-TDSlo. Demographic, clinico-pathological, and molecular characteristics of the 2 subgroups were compared. RESULTS: Compared to BRAF-TDShi tumors (17%), BRAF-TDSlo tumors (83%) were more frequent in blacks and Hispanics (6% vs 0%, P = 0.035 and 12% vs 0%, P = 0.05, respectively), they were larger (2.95 ± 1.7 vs 2.03 ± 1.5, P = 0.002), with more tumor-involved lymph nodes (3.9 ± 5.8 vs 2.0 ± 4.2, P = 0.042), and a higher frequency of distant metastases (3% vs 0%, P = 0.043). Gene set enrichment analysis showed positive enrichment for RAS signatures in the BRAF-TDShi cohort, with corresponding reciprocal changes in the BRAF-TDSlo group. Several microRNAs (miRs) targeting nodes in the transforming growth factor ß (TGFß)-SMAD pathway, miR-204, miR-205, and miR-144, were overexpressed in the BRAF-TDShi group. In the subset with follow-up data, BRAF-TDShi tumors had higher complete responses to therapy (94% vs 57%, P < 0.01) than BRAF-TDSlo tumors. CONCLUSION: Enrichment for RAS signatures, key genes involved in cell polarity and specific miRs targeting the TGFß-SMAD pathway define 2 subtypes of BRAF-mutant PTCs with distinct clinical characteristics and prognosis.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Radioisótopos do Iodo , MicroRNAs/genética , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Fator de Crescimento Transformador beta/genética
11.
Endocr Relat Cancer ; 28(6): 391-402, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33890869

RESUMO

Constitutive MAPK activation silences genes required for iodide uptake and thyroid hormone biosynthesis in thyroid follicular cells. Accordingly, most BRAFV600E papillary thyroid cancers (PTC) are refractory to radioiodide (RAI) therapy. MAPK pathway inhibitors rescue thyroid-differentiated properties and RAI responsiveness in mice and patient subsets with BRAFV600E-mutant PTC. TGFB1 also impairs thyroid differentiation and has been proposed to mediate the effects of mutant BRAF. We generated a mouse model of BRAFV600E-PTC with thyroid-specific knockout of the Tgfbr1 gene to investigate the role of TGFB1 on thyroid-differentiated gene expression and RAI uptake in vivo. Despite appropriate loss of Tgfbr1, pSMAD levels remained high, indicating that ligands other than TGFB1 were engaging in this pathway. The activin ligand subunits Inhba and Inhbb were found to be overexpressed in BRAFV600E-mutant thyroid cancers. Treatment with follistatin, a potent inhibitor of activin, or vactosertib, which inhibits both TGFBR1 and the activin type I receptor ALK4, induced a profound inhibition of pSMAD in BRAFV600E-PTCs. Blocking SMAD signaling alone was insufficient to enhance iodide uptake in the setting of constitutive MAPK activation. However, combination treatment with either follistatin or vactosertib and the MEK inhibitor CKI increased 124I uptake compared to CKI alone. In summary, activin family ligands converge to induce pSMAD in Braf-mutant PTCs. Dedifferentiation of BRAFV600E-PTCs cannot be ascribed primarily to activation of SMAD. However, targeting TGFß/activin-induced pSMAD augmented MAPK inhibitor effects on iodine incorporation into BRAF tumor cells, indicating that these two pathways exert interdependent effects on the differentiation state of thyroid cancer cells.


Assuntos
Radioisótopos do Iodo , Neoplasias da Glândula Tireoide , Ativinas/metabolismo , Animais , Folistatina , Humanos , Iodetos/metabolismo , Ligantes , Sistema de Sinalização das MAP Quinases , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Proteínas Smad/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia
12.
Cancer Discov ; 11(5): 1158-1175, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33318036

RESUMO

Mutations of subunits of the SWI/SNF chromatin remodeling complexes occur commonly in cancers of different lineages, including advanced thyroid cancers. Here we show that thyroid-specific loss of Arid1a, Arid2, or Smarcb1 in mouse BRAFV600E-mutant tumors promotes disease progression and decreased survival, associated with lesion-specific effects on chromatin accessibility and differentiation. As compared with normal thyrocytes, BRAFV600E-mutant mouse papillary thyroid cancers have decreased lineage transcription factor expression and accessibility to their target DNA binding sites, leading to impairment of thyroid-differentiated gene expression and radioiodine incorporation, which is rescued by MAPK inhibition. Loss of individual SWI/SNF subunits in BRAF tumors leads to a repressive chromatin state that cannot be reversed by MAPK pathway blockade, rendering them insensitive to its redifferentiation effects. Our results show that SWI/SNF complexes are central to the maintenance of differentiated function in thyroid cancers, and their loss confers radioiodine refractoriness and resistance to MAPK inhibitor-based redifferentiation therapies. SIGNIFICANCE: Reprogramming cancer differentiation confers therapeutic benefit in various disease contexts. Oncogenic BRAF silences genes required for radioiodine responsiveness in thyroid cancer. Mutations in SWI/SNF genes result in loss of chromatin accessibility at thyroid lineage specification genes in BRAF-mutant thyroid tumors, rendering them insensitive to the redifferentiation effects of MAPK blockade.This article is highlighted in the In This Issue feature, p. 995.


Assuntos
Proteínas Cromossômicas não Histona/genética , Neoplasias da Glândula Tireoide/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Técnicas de Reprogramação Celular , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos , Mutação , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
14.
Clin Cancer Res ; 25(10): 3141-3151, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30737244

RESUMO

PURPOSE: Thyroid cancer cell lines are valuable models but have been neglected in pancancer genomic studies. Moreover, their misidentification has been a significant problem. We aim to provide a validated dataset for thyroid cancer researchers. EXPERIMENTAL DESIGN: We performed next-generation sequencing (NGS) and analyzed the transcriptome of 60 authenticated thyroid cell lines and compared our findings with the known genomic defects in human thyroid cancers. RESULTS: Unsupervised transcriptomic analysis showed that 94% of thyroid cell lines clustered distinctly from other lineages. Thyroid cancer cell line mutations recapitulate those found in primary tumors (e.g., BRAF, RAS, or gene fusions). Mutations in the TERT promoter (83%) and TP53 (71%) were highly prevalent. There were frequent alterations in PTEN, PIK3CA, and of members of the SWI/SNF chromatin remodeling complex, mismatch repair, cell-cycle checkpoint, and histone methyl- and acetyltransferase functional groups. Copy number alterations (CNA) were more prevalent in cell lines derived from advanced versus differentiated cancers, as reported in primary tumors, although the precise CNAs were only partially recapitulated. Transcriptomic analysis showed that all cell lines were profoundly dedifferentiated, regardless of their derivation, making them good models for advanced disease. However, they maintained the BRAFV600E versus RAS-dependent consequences on MAPK transcriptional output, which correlated with differential sensitivity to MEK inhibitors. Paired primary tumor-cell line samples showed high concordance of mutations. Complete loss of p53 function in TP53 heterozygous tumors was the most prominent event selected during in vitro immortalization. CONCLUSIONS: This cell line resource will help inform future preclinical studies exploring tumor-specific dependencies.


Assuntos
Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Telomerase/genética , Neoplasias da Glândula Tireoide/genética , Proteína Supressora de Tumor p53/genética , Animais , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias da Glândula Tireoide/classificação , Neoplasias da Glândula Tireoide/patologia , Estudos de Validação como Assunto
15.
Endocrinol Metab (Seoul) ; 34(1): 11-22, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30784243

RESUMO

The development of next generation sequencing (NGS) has led to marked advancement of our understanding of genetic events mediating the initiation and progression of thyroid cancers. The NGS studies have confirmed the previously reported high frequency of mutually-exclusive oncogenic alterations affecting BRAF and RAS proto-oncogenes in all stages of thyroid cancer. Initially identified by traditional sequencing approaches, the NGS studies also confirmed the acquisition of alterations that inactivate tumor protein p53 (TP53) and activate phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) in advanced thyroid cancers. Novel alterations, such as those in telomerase reverse transcriptase (TERT) promoter and mating-type switching/sucrose non-fermenting (SWI/SNF) complex, are also likely to promote progression of the BRAFV600E-driven thyroid cancers. A number of genetically engineered mouse models (GEMM) of BRAFV600E-driven thyroid cancer have been developed to investigate thyroid tumorigenesis mediated by oncogenic BRAF and to explore the role of genetic alterations identified in the genomic analyses of advanced thyroid cancer to promote tumor progression. This review will discuss the various GEMMs that have been developed to investigate oncogenic BRAFV600E-driven thyroid cancers.


Assuntos
Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proto-Oncogenes/genética , Neoplasias da Glândula Tireoide/genética , Animais , Carcinoma Papilar/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Progressão da Doença , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Camundongos Transgênicos/genética , Mutação , Proto-Oncogene Mas , Telomerase/genética , Neoplasias da Glândula Tireoide/veterinária , Proteína Supressora de Tumor p53/metabolismo
16.
Mol Cancer Res ; 17(5): 1036-1048, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30733375

RESUMO

Cancer cell lines are critical models to study tumor progression and response to therapy. In 2008, we showed that approximately 50% of thyroid cancer cell lines were redundant or not of thyroid cancer origin. We therefore generated new authenticated thyroid cancer cell lines and patient-derived xenograft (PDX) models using in vitro and feeder cell approaches, and characterized these models in vitro and in vivo. We developed four thyroid cancer cell lines, two derived from 2 different patients with papillary thyroid cancer (PTC) pleural effusions, CUTC5, and CUTC48; one derived from a patient with anaplastic thyroid cancer (ATC), CUTC60; and one derived from a patient with follicular thyroid cancer (FTC), CUTC61. One PDX model (CUTC60-PDX) was also developed. Short tandem repeat (STR) genotyping showed that each cell line and PDX is unique and match the original patient tissue. The CUTC5 and CUTC60 cells harbor the BRAF (V600E) mutation, the CUTC48 cell line expresses the RET/PTC1 rearrangement, and the CUTC61 cells have the HRAS (Q61R) mutation. Moderate to high levels of PAX8 and variable levels of NKX2-1 were detected in each cell line and PDX. The CUTC5 and CUTC60 cell lines form tumors in orthotopic and flank xenograft mouse models. IMPLICATIONS: We have developed the second RET/PTC1-expressing PTC-derived cell line in existence, which is a major advance in studying RET signaling. We have further linked all cell lines to the originating patients, providing a set of novel, authenticated thyroid cancer cell lines and PDX models to study advanced thyroid cancer.


Assuntos
Adenocarcinoma Folicular/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Adenocarcinoma Folicular/genética , Idoso , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Camundongos , Pessoa de Meia-Idade , Mutação , Transplante de Neoplasias , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética
17.
Cancer Discov ; 9(2): 264-281, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30305285

RESUMO

Translation initiation is orchestrated by the cap binding and 43S preinitiation complexes (PIC). Eukaryotic initiation factor 1A (EIF1A) is essential for recruitment of the ternary complex and for assembling the 43S PIC. Recurrent EIF1AX mutations in papillary thyroid cancers are mutually exclusive with other drivers, including RAS. EIF1AX mutations are enriched in advanced thyroid cancers, where they display a striking co-occurrence with RAS, which cooperates to induce tumorigenesis in mice and isogenic cell lines. The C-terminal EIF1AX-A113splice mutation is the most prevalent in advanced thyroid cancer. EIF1AX-A113splice variants stabilize the PIC and induce ATF4, a sensor of cellular stress, which is co-opted to suppress EIF2α phosphorylation, enabling a general increase in protein synthesis. RAS stabilizes c-MYC, an effect augmented by EIF1AX-A113splice. ATF4 and c-MYC induce expression of amino acid transporters and enhance sensitivity of mTOR to amino acid supply. These mutually reinforcing events generate therapeutic vulnerabilities to MEK, BRD4, and mTOR kinase inhibitors. SIGNIFICANCE: Mutations of EIF1AX, a component of the translation PIC, co-occur with RAS in advanced thyroid cancers and promote tumorigenesis. EIF1AX-A113splice drives an ATF4-induced dephosphorylation of EIF2α, resulting in increased protein synthesis. ATF4 also cooperates with c-MYC to sensitize mTOR to amino acid supply, thus generating vulnerability to mTOR kinase inhibitors. This article is highlighted in the In This Issue feature, p. 151.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Processamento Alternativo , Carcinogênese/patologia , Fator de Iniciação 1 em Eucariotos/genética , Mutação , Neoplasias da Glândula Tireoide/patologia , Proteínas ras/genética , Fator 4 Ativador da Transcrição/genética , Animais , Apoptose , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/metabolismo , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fosforilação , Biossíntese de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Clin Endocrinol Metab ; 104(5): 1417-1428, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30256977

RESUMO

CONTEXT: BRAFV600E mutant thyroid cancers are often refractory to radioiodine (RAI). OBJECTIVES: To investigate the utility and molecular underpinnings of enhancing lesional iodide uptake with the BRAF inhibitor vemurafenib in patients with RAI-refractory (RAIR). DESIGN: This was a pilot trial that enrolled from June 2014 to January 2016. SETTING: Academic cancer center. PATIENTS: Patients with RAIR, BRAF mutant thyroid cancer. INTERVENTION: Patients underwent thyrotropin-stimulated iodine-124 (124I) positron emission tomography scans before and after ~4 weeks of vemurafenib. Those with increased RAI concentration exceeding a predefined lesional dosimetry threshold (124I responders) were treated with iodine-131 (131I). Response was evaluated with imaging and serum thyroglobulin. Three patients underwent research biopsies to evaluate the impact of vemurafenib on mitogen-activated protein kinase (MAPK) signaling and thyroid differentiation. MAIN OUTCOME MEASURE: The proportion of patients in whom vemurafenib increased RAI incorporation to warrant 131I. RESULTS: Twelve BRAF mutant patients were enrolled; 10 were evaluable. Four patients were 124I responders on vemurafenib and treated with 131I, resulting in tumor regressions at 6 months. Analysis of research tumor biopsies demonstrated that vemurafenib inhibition of the MAPK pathway was associated with increased thyroid gene expression and RAI uptake. The mean pretreatment serum thyroglobulin value was higher among 124I responders than among nonresponders (30.6 vs 1.0 ng/mL; P = 0.0048). CONCLUSIONS: Vemurafenib restores RAI uptake and efficacy in a subset of BRAF mutant RAIR patients, probably by upregulating thyroid-specific gene expression via MAPK pathway inhibition. Higher baseline thyroglobulin values among responders suggest that tumor differentiation status may be a predictor of vemurafenib benefit.


Assuntos
Diferenciação Celular , Radioisótopos do Iodo/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Câncer Papilífero da Tireoide/terapia , Neoplasias da Glândula Tireoide/terapia , Vemurafenib/uso terapêutico , Adulto , Idoso , Desdiferenciação Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Tolerância a Radiação , Câncer Papilífero da Tireoide/diagnóstico por imagem , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Tirotropina Alfa
19.
J Clin Invest ; 128(9): 4086-4097, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29990309

RESUMO

Anaplastic thyroid carcinomas (ATCs) have a high prevalence of BRAF and TP53 mutations. A trial of vemurafenib in nonmelanoma BRAFV600E-mutant cancers showed significant, although short-lived, responses in ATCs, indicating that these virulent tumors remain addicted to BRAF despite their high mutation burden. To explore the mechanisms mediating acquired resistance to BRAF blockade, we generated mice with thyroid-specific deletion of p53 and dox-dependent expression of BRAFV600E, 50% of which developed ATCs after dox treatment. Upon dox withdrawal there was complete regression in all mice, although recurrences were later detected in 85% of animals. The relapsed tumors had elevated MAPK transcriptional output, and retained responses to the MEK/RAF inhibitor CH5126766 in vivo and in vitro. Whole-exome sequencing identified recurrent focal amplifications of chromosome 6, with a minimal region of overlap that included Met. Met-amplified recurrences overexpressed the receptor as well as its ligand Hgf. Growth, signaling, and viability of Met-amplified tumor cells were suppressed in vitro and in vivo by the Met kinase inhibitors PF-04217903 and crizotinib, whereas primary ATCs and Met-diploid relapses were resistant. Hence, recurrences are the rule after BRAF suppression in murine ATCs, most commonly due to activation of HGF/MET signaling, which generates exquisite dependency to MET kinase inhibitors.


Assuntos
Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Carcinoma Anaplásico da Tireoide/tratamento farmacológico , Carcinoma Anaplásico da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo , Substituição de Aminoácidos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cumarínicos/farmacologia , Crizotinibe/farmacologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Genes p53 , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Pirazinas/farmacologia , Sulfonamidas/farmacologia , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Triazóis/farmacologia
20.
Cancer Res ; 78(16): 4642-4657, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29760048

RESUMO

Of the three RAS oncoproteins, only HRAS is delocalized and inactivated by farnesyltransferase inhibitors (FTI), an approach yet to be exploited clinically. In this study, we treat mice bearing Hras-driven poorly differentiated and anaplastic thyroid cancers (Tpo-Cre/HrasG12V/p53flox/flox ) with the FTI tipifarnib. Treatment caused sustained tumor regression and increased survival; however, early and late resistance was observed. Adaptive reactivation of RAS-MAPK signaling was abrogated in vitro by selective RTK (i.e., EGFR, FGFR) inhibitors, but responses were ineffective in vivo, whereas combination of tipifarnib with the MEK inhibitor AZD6244 improved outcomes. A subset of tumor-bearing mice treated with tipifarnib developed acquired resistance. Whole-exome sequencing of resistant tumors identified a Nf1 nonsense mutation and an activating mutation in Gnas at high allelic frequency, supporting the on-target effects of the drug. Cell lines modified with these genetic lesions recapitulated tipifarnib resistance in vivo This study demonstrates the feasibility of targeting Ras membrane association in cancers in vivo and predicts combination therapies that confer additional benefit.Significance: Tipifarnib effectively inhibits oncogenic HRAS-driven tumorigenesis and abrogating adaptive signaling improves responses. NF1 and GNAS mutations drive acquired resistance to Hras inhibition, supporting the on-target effects of the drug. Cancer Res; 78(16); 4642-57. ©2018 AACR.


Assuntos
Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Neurofibromina 1/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias da Glândula Tireoide/tratamento farmacológico , Animais , Benzimidazóis/administração & dosagem , Carcinogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Mutação , Quinolonas/administração & dosagem , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...